

Application Instrumentation, Stress Testing and Production Management:

What Software-plus-Services ISVs Need to Know

Microsoft Software-plus-Services

Thursday, 4 June 2009

Version 7.08

Page ii

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed
as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted
to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented
after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR
STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Microsoft grants you the right to reproduce
this white paper, in whole or in part, specifically and solely for the purpose of understanding licensing implications for
hosting scenarios using virtualization.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the
furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual
property.

 2008 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, Hyper-V, SharePoint, SQL Server, Windows, the Windows logo, Windows PowerShell, Windows
Server, and Windows Vista are trademarks of the Microsoft group of companies.

All other trademarks are property of their respective owners.

Page iii

CONTENTS

Contents ..3

List of Acronyms ...1

Introduction ...2

What Is A Software-plus-Services Application? ..3

Application Instrumentation...4

Backend Processing Component Instrumentation ...5

Database and Data Access Layer Instrumentation...6

Front End User Interface and Web Services ...6

Network and Storage Infrastructure ..7

Real-Time Application Analysis ..7

Pre-Production Stress Testing ...9

Testing Types ..9

Failure Test ... 10

Sustained Load Test ... 10

Ongoing Approach (Agile Stress Testing) ... 10

Special Investigations ... 11

Leveraging Pre-Production Testing for Production Visibility ... 11

Production Application Lifecycle Management – tying it all together ... 12

Business Requirements Development .. 12

24x7 Production Application Support ... 13

Critical Application Management Processes .. 13

Application Monitoring Enables Proactive Efficient Management .. 14

SLA/KPI Visibility for Customers ... 14

Continuous Performance Optimization .. 15

Summary ... 16

Page 1

 LIST OF ACRONYMS

Acronym Meaning

APM Application Performance Management

KPI Key Performance Indicator

OS Operating System

SaaS Software as a Service

SLA Service Level Agreement

WMI Windows Management Instrumentation

Page 2

INTRODUCTION
Developing Software-plus-Services applications is not a trivial undertaking. Decisions need to be made regarding
multi-tenancy, scalability, the development process, go-to-market strategy, etc., in order to enable a smooth
launch and ongoing delivery of the application. This paper will provide a successful and highly efficient process
and describe an associated technology to enable the launch of any new Software-plus-Services application with
a high degree of confidence.

This white paper will explore the following topics:

• Application and end-user experience instrumentation;

• Pre-Production and Ongoing Stress Testing – how it should fit into the overall application
development and deployment processes;

• Production Application Lifecycle Management – how to leverage people, processes, and
instrumentation to lower application delivery costs and improve the quality of delivery.

A key element in the successful launch of a Software-plus-Services application is the introduction of a
Application Performance Management technology. Inclusion of Application Performance Management (APM)
technology and services is critical to the successful deployment of Software-plus-Services applications for a
number of important business reasons.

1. Customers need to trust the ability of the application to deliver the business value they’ve signed up
for. A best practices approach to address this challenge is to provide near real-time customer facing
dashboards showing the availability and performance of the application being delivered. Substantial
value is delivered to the end customer via dashboards which include business relevant metrics
based on usage of the platform. These metrics can include values for opportunities generated, new
revenue acquired, cost savings, conversion rates, etc.

2. Contribute to prospect confidence during the selling process. Giving the prospective customer
general dashboards establishes the business relevant benefits from APM. This approach is simple
and highly effective.

3. Improve bottom line results by reducing operational expenses. Simply having a unified view of
internal and external application performance and providing proactive issue notification to the
internal or external technology operations team enables and promotes efficiency. These efficiency
gains provide a means to achieve critical mass quickly, improving the bottom line, and providing the
pricing flexibility needed to win new customers.

4. Increase revenue by identifying areas where you can improve application efficiency. All software
systems have opportunities for improvement. Combining the in depth detail of APM data with
customer click-stream data can create powerful business analytics which can help improve user
conversion rates, reduce customer churn, and generate additional customer up sales.

This paper addresses the opportunity to substantially improve business efficiency through a systematic
approach of application instrumentation, stress testing, proactive production management, and business
intelligence integrated reporting for Software-plus-Services solutions. A Software-plus-Services application can
be a SaaS application utilizing external services (i.e. Azure) or specialized client side software like a mobile client.

Page 3

WHAT IS A SOFTWARE-PLUS-SERVICES APPLICATION?
Software-plus-Services should not be confused as another name for SaaS. A SaaS (Software as a Service)
application is simply an application delivered as a service; it does not specify what type of application
architecture is involved. A Software-plus-Services application combines software that is running in multiple
locations together in a unified value proposition for users. A Software-plus-Services application may be sold
and delivered as a product, as a service, or as a combination of both.

Examples of Software-plus-Services applications include:

• Applications that run on-premise but integrate services delivered from the cloud such as a trading
application which pulls real-time data feeds from the stock exchanges;

• Applications that run in a hosted environment over the internet, but integrate back into the IT
environments of their customers, such as hosted CRM systems that integrate into their customers’
on-premise Active Directory or sales systems;

• Applications that integrate a user experience into clients outside the web browser, such as mobile
devices, the Windows desktop or Microsoft Office;

• Combinations of the above.

Regardless of the architecture of your Software-plus-Services application, to deploy and manage it effectively
you must be able to monitor its performance. This means you must have the ability to know how any given
component of the application is performing at any time, regardless of whether that component is deployed on a
customer desktop, on a customer server, on a hosted server, or in a remotely supplied web service. This white
paper will provide you with guidance on how to effectively implement performance monitoring for your
Software-plus-Services applications.

The System Shepherd® platform referenced in this paper is a perfect example of a complex Software-plus-
Services application.

• Client side agent technology is deployed within your internal or externally hosted application
environment.

• The agent technology sends application performance data to the externally hosted System
Shepherd® backend environment via secure web services calls.

• Technical dashboards and alerts are delivered in a typical SaaS model via web browser and are
accessible through mobile devices.

• Executive business performance dashboards for your applications are created via client side
software from Business Objects. These are accessed either directly from the desktop software or via
Adobe browser plug-in from a secure cloud report repository which then accesses real-time data via
web services calls to the System Shepherd® platform.

Page 4

APPLICATION INSTRUMENTATION
Application instrumentation is the means to monitor and report the performance of an application. This
instrumentation is done by using a combination of internal and external observation methods. Internal counters
can be provided by the underlying operating system and by the application layer itself. External counters are
typically used to measure end-user experience and other external environmental metrics. It is critical to
combine internal and external measures into a single repository to maximize the business value of monitoring

Very rarely do organizations look at the operational and business needs during the initial phases of application
instrumentation instead they look primarily at the needs of the software engineering team. This is a highly
inefficient approach. Based on experience with a number of applications at various stages of development and
deployment, a best practices approach has been developed that satisfies all three sets of requirements. A
standard method for applying instrumentation allows engineering and operations to “speak” the same support
language. This approach allows these groups to work in tandem to proactively resolve service problems much
faster and provide better value to the business.

At a high level, the approach is simple. The groups standardize on the same instrumentation technology. Using
a flexible, cost effective SaaS-based APM monitoring platform like Absolute Performance’s System Shepherd®,
the development staff can quickly deploy monitoring and performance visualization across their pre-production
environments. An inheritance-based configuration scheme should be employed to enable seamless migration of
monitoring configurations from the pre-production environments into the production environment. Likewise,
meaningful performance measurements collected in the production environment are immediately familiar to
software engineering personnel for side-by-side comparison with their development/test environment.

The areas of critical application instrumentation are illustrated in the following diagram.

http://www.absolute-performance.com/�
http://www.absolute-performance.com/productsandservices/system-shepherdr-mainmenu-219�

Page 5

Backend Processing Component Instrumentation

For most applications created in the Software-plus-Services paradigm, agent-based monitoring with very low
resource consumption is the most reliable and extensible approach available to enable efficient
instrumentation. Further, the most efficient instrumentation approach is to use a scalable template-based
architecture such as used by System Shepherd®. This method allows for the creation of a class of infrastructure
monitoring templates, which may be reused many times over. This methodology provides the ability to capture
“one-off” metrics on specific devices while allowing configuration inheritance from the master template to take
care of the rest. This will save significant time and resources allowing for a seamless and consistent migration
from pre-production environments into production.

When looking at designing application backend components, it is important to take instrumentation into
account from the onset of development. A lot of valuable data is available in standard monitoring configuration
templates for most products via WMI or PERFLIB including MSMQ and .NET application component stack
metrics. Many of the metrics exposed by WMI are counters which can be useful in their raw format for
troubleshooting longevity related problems. However, they are often most valuable when converted to rate
based metrics which should be inherent in the monitoring solution.

Many of the most important metrics are not available through standard WMI counters. Some application
developers choose to create custom WMI counters. The article “Powerful Instrumentation Options in .NET Let
You Build Manageable Apps with Confidence” located at http://msdn.microsoft.com/en-
us/magazine/dvdarchive/cc300488.aspx serves as an excellent starting point for creating application specific
counters. These counters can then be monitored via custom templates and thresholds within the monitoring
solution. An alternate approach, which some development teams find easier to implement, is to log
performance metrics and application events to a file. The monitoring solution should also be able to watch
these files on a continuous basis and translate the metrics and events into rates using frequency based log
analysis.

What custom parameters of an application should be monitored?

• Transaction details by user or client, or a combination of the two, can provide valuable insight into
application utilization patterns by client or user within the application. These metrics can also be
combined with resource utilization metrics to create a view of resource utilization by client or user.
This information can then be translated into per-client or per-user delivery cost. This provides
valuable pricing and margin data to the sales organization and enables the creation of per-deal
profit and loss statements.

• Gathering internal application component or method call frequency as well as processing time is
extremely valuable in determining where to begin the software optimization process. This will also
point out where optimization will have the greatest impact.

• Monitoring external service call frequency and call duration (either internal or external) to web
services such as Azure is critical. If there are performance or availability problems outside of the
application, the development team needs visibility into where they are located so the team may
either code around the problems or work with the external provider to resolve the issues.

http://msdn.microsoft.com/en-us/magazine/dvdarchive/cc300488.aspx�
http://msdn.microsoft.com/en-us/magazine/dvdarchive/cc300488.aspx�

Page 6

Database and Data Access Layer Instrumentation

The data access layer is most likely composed of a SQL Server database and one or more in-memory caching
services, and external web services calls. Basic database monitoring is fairly straightforward and handled by
most products “out of the box”. However, when building an application with instrumentation in mind, it is
important to consider what additional information the monitoring platform should capture from either the
database or external data service calls. It is recommended the following incremental metrics be used:

• Business relevant metrics such as revenue, user conversion, transaction volume, etc. These metrics
enable the use of APM data for business analytics. This information is key to supporting continuous
performance improvement at the business level.

• Resource utilization by user or client enables costing at the customer or user level as previously
discussed.

• Aggregate application usage metrics help to facilitate both long-term capacity planning and feature
utilization pattern analysis.

• External service call frequency and duration for data access by user or client provides valuable
insight into the delivery characteristics of third party data and services providers.

• Data cache utilization and performance provides the visibility necessary to determine if the cache
client software is effectively utilizing the data cache in place.

Some of this data can be gathered through custom queries to databases by the monitoring system while others
require development team resources to collect metrics through the mechanisms identified in the previous
section.

Front End User Interface and Web Services

Some of the most valuable business relevant metrics reside in the front end components of an application
served by IIS or other web server components. As with the other layers of the application stack, the standard
metrics available through WMI provide a good starting point. However, these metrics do not give visibility into
the end-user experience. The recommended best practice is to combine this information with synthetic user
transaction monitoring via a user transaction simulation service such as WebWalk™. This layer of monitoring
allows for proactive tracking of the end-user experience. Alert thresholds should be set for metrics such as
content/functionality validation, transaction execution times, and rates of change for transaction execution
times. This component of external monitoring should be replicated behind the load balancer within the
application environment to provide visibility into the behavior originating from individual servers or virtual
machines. Combining external synthetic transaction monitoring with internal synthetic transaction monitoring
enables the operations/delivery organization or outsourced provider to be proactive in managing the
application.

In this tier, the value of the data appearing in access logs should also be monitored. This can be achieved by
customizing the logging parameters to expose the user or client associated with each request and the amount of
time it took to return the request to the browser. Frequency based log analysis can then be employed to
capture access frequency and average/max/min response time metrics associated with the requests on an

http://www.absolute-performance.com/productsandservices/webwalk-mainmenu-220�

Page 7

aggregate basis. This data is highly valuable for isolating
application response time issues. Additionally, the raw
data can be used as part of the overall data set to
identify resource utilization by an individual user or
client.

Network and Storage Infrastructure

A holistic view of the application delivery infrastructure
is not complete without looking at the performance and
availability of the network and storage infrastructure.
Access to this data is dependent upon the hosting
strategy being employed. Administrator level access to
the network and storage infrastructure provides a
wealth of data. This data may be collected via SNMP
with System Shepherd® agents, or just about any other
monitoring solution. If access to the network and
storage infrastructure is limited, data collection will
require a bit of creativity. One method is to correlate
data from ping and port monitoring from various points
within the architecture with individual server or virtual
machine networking statistics. This provides a view of
network behavior. On the storage side, individual server
(or virtual machine) physical storage metrics can be
used to obtain a partial picture of storage performance.

Real-Time Application Analysis

Once the above recommendations are implemented, data will then be available for analysis. The key is to be
able to use the data to improve application delivery from the perspective of the end-user and the business.
Regardless of the tools or services used to collect the data, it needs to be accessible in one place to maximize
the value of the monitoring solution.

The best practice in this area is to provide the technical teams with proactive alerting. Proactive alerting requires
configurable alarm and escalation rules and the ability to perform real-time or near real-time analysis on the
data in both ad-hoc and standard views. To truly provide proactive management of the application the
following graphical analysis tools are recommended:

• Metric cross correlation with scaling – allows for the graphical correlation of any metric from any
measurement point to be correlated with any other metric across the entire application
architecture;

• Metric scatter plots – allows for identification of any trends that may not be evident in a time based
graph;

Page 8

• Metric watch lists with trend indicators – enables the operations team to analyze various metrics in
a compact view with spark lines indicating 24 hour trends which can dramatically reduce root cause
analysis time;

• SLA graphs – provides the ability to view at-a-glance whether or not the application or its sub-
components are meeting internal and external business requirements;

• Custom tabs or workspaces – enables the creation of job-specific views of the infrastructure and are
extremely valuable in troubleshooting recurring issues or difficult to “catch” problems;

• Web services data access – through standards compliant web services (SOAP 1.1/WSDL or Restful
JSON) custom views can be easily created and reported via industry standard tools such as Crystal
Reports™ and Xcelsius™.

Page 9

PRE-PRODUCTION STRESS TESTING
When preparing for the launch of an application, it is crucial to understand how it will likely behave under real-
world user load. Our experience indicates the best way to plan for growth and avoid surprises is to simulate the
anticipated user load with a realistic and well-instrumented load test. Developing a test scenario for each of the
application’s anticipated user types ensures that all application functions are exercised. Furthermore, by
simultaneously loading the application with multiple user types, we can expose complex interactions inside the
application such as deadlocks, race conditions, and queue backlogs. Real-world application usage is rarely
characterized by searching for the same keyword or logging in as a single user thousands of times. It is
extremely important to introduce unique, dynamic user input to the load testing to avoid falsely positive results
due to caching of sessions, query results, etc.

Effective load testing, like ongoing operational monitoring, should correlate end-user experience with internal
application performance metrics. The load testing then serves as both a direct measurement of performance as
well as a means to exercise
the application while
observing its behavior
directly though database,
application, and OS metrics.
The second question after
“What is the capacity of the
application?” is always
“Where did the bottleneck
occur?” With a properly
instrumented environment
and well-designed load test,
we are able to answer both
questions.

Stress testing should not be a standalone effort. In an ideal world, it will take advantage of all of the
instrumentation previously created and leverage the existing synthetic user scenarios. With System Shepherd®,
WebWalk™, and StressWalk™ all of the components tie together to provide maximum reusability. Additionally,
data from the stress testing runs should be available for analysis side-by-side with live production data thus
enabling correlation and continued enhancement of the stress testing approach.

Testing Types

The chosen stress testing service approach should be tailored to specific business and testing objectives. In
some cases, stress testing is part of an ongoing code release process, validating functionality and performance
prior to pushing each new revision to production. For others, it is performance validation of a new platform,
application, or hardware deployment. Using a stress testing service can be much more cost effective than
purchasing a product with a permanent $20K+ per month cost you can expect to spend for the product +
product support + load generation and data analysis infrastructure + training + a person. Results are produced

http://www.absolute-performance.com/productsandservices/stresswalk-mainmenu-221�

Page 10

much faster and provide deeper analysis because the stress testing and application/infrastructure
instrumentation are tied together in a single solution.

Failure Test

Execution of an application failure test is usually the first component of a stress test. User load is ramped up
proportionally across usage scenarios until the application fails or experiences intermittent failures beyond the
business defined thresholds. The critical analysis points for this type of test include:

• Failure mode identification. Are there one or more failure types (i.e. page timeouts, explicit
application errors, and unacceptable response times)? Which application components experienced
failures?

• Root cause analysis. For the software components which experienced failures, why? Was it caused
by database deadlock conditions, a saturated connection pool, external service calls, firewall
configuration, disk I/O bottlenecks, failure to use data caching components as designed, inefficient
code, etc.?

• Relative expense or overhead of each application user type or scenario (i.e. content contributor vs.
read-only user). Based on business assumptions, this will help determine prioritization of software
optimization and new features.

Sustained Load Test

A sustained load test is designed to identify the longer term reliability and performance of the application. It is
executed at 80% of the failure test capacity for several days or longer according to business requirements and
risk tolerance. Analysis of any outright failures during this test is identical to the failure test analysis. However,
special emphasis should be placed on analysis of gradual performance degradation over time. This type of test
often reveals both software improvement opportunities as well as operational procedure improvement or
automation opportunities. Critical analysis points include:

• Component performance degradation over time,

• Component memory leaks,

• Garbage collection induced issues (these typically take the form of periodic slow response),

• Database backup and automated maintenance induced issues,

• Long-term backend processing performance (jobs, queues, archiving, etc.),

• Intermittent component failures.

Ongoing Approach (Agile Stress Testing)

Effective application lifecycle management should specify stress testing as a prerequisite to production release.
Testing each new application version under load provides a rigorous shakedown to expose elusive failures or
performance issues, greatly minimizing risk. With retention of thousands of users at stake, the confidence and
peace-of-mind following a successful test is often just as valuable as identifying a failure. Progressive
development teams have instituted regular load testing even earlier in the lifecycle to quantitatively evaluate
technologies, optimizations, algorithms, etc., based on real-world scenarios. Critical analysis points include:

• Validation and quantification of performance improvements,

Page 11

• Validation of application functionality and stability,

• Benchmark validation against test results from the previous release.

Special Investigations

It is not a coincidence that the most difficult application problems only occur in production. Typically, complex
real-world user activity trips the most elusive flaws in an application. A specialized stress test, designed (or
modified) to reproduce a user-reported error can expedite fault resolution. Accelerating the incidence of
application failures to a matter of hours – especially when combined with custom monitoring triggers to capture
a snapshot of the application at the moment of an intermittent failure, can save man-days of expensive
development resources. Utilizing stress testing in this manner can dramatically cut problem resolution time and
reduce the longevity of a critical problem identified in the production environment.

Leveraging Pre-Production Testing for Production Visibility

When you execute pre-production stress testing, you should be able to leverage the work product to
continuously enhance production user experience monitoring. Your chosen solution should use interchangeable
configurations between production user experience monitoring and stress testing. The System Shepherd®
WebWalk™ service (discussed in the Application Instrumentation section) makes use of the same user scenario
configurations as StressWalk™ which ultimately improves the efficiency and effectiveness of both components
while providing a significant cost savings to your business.

Page 12

PRODUCTION APPLICATION LIFECYCLE MANAGEMENT – TYING IT ALL TOGETHER
Building and deploying complex business
applications is difficult. It is insufficient to release
applications or application updates to an ill prepared
IT operations organization. To maximize the value
and investment in new technology, a more holistic
approach must be undertaken. The four key
components to this approach are:

• Business requirements development
with an emphasis on translation to
operational requirements,

• Application development support
process including stress testing and
instrumentation which were covered in
detail previously,

• 24x7 production application support
inclusive of key ITIL based processes

• Continuous performance optimization
which focuses on delivering more value
to both end customers and the business leveraging the APM solution in place.

Business Requirements Development

The business requirements for an application typically evolve over time as the business changes and
grows. Because of this, the business requirement development process needs to continue throughout the life of
the application. Unfortunately, many companies stop this process in the development phase and are then ill
prepared to make changes when the application is in production. The process for developing meaningful
business requirements must take into account the many facets of the business. At the top level are market
assumptions which relate directly to sales and marketing projections. These, in turn, translate to a multi-
dimensional set of requirements related to the service being provided. During development, it is important to
remember that business requirements are based on sales and marketing projections and to not allow the
operational delivery requirements get too far ahead of actual sales execution. This approach focuses on basing
the requirements on business projections rather than engineering capabilities.

As high level business requirements are translated into operational delivery requirements, accessible delivery
metrics such as availability, end-user performance of the XYZ process, average screen response time, average
operational cost per user, etc. should begin to be collected. Additionally, the requirements should dictate what
type of support is needed: type of data center, outsourced 24x7 operations or internal delivery resources, an
active disaster recovery site or a less robust DR plan, dedicated infrastructure or shared infrastructure, etc.
Operational requirements are defined as those functions that allow the application to continually deliver the
defined business service in a consistent manner.

Page 13

24x7 Production Application Support

Ongoing development and improvement of the instrumentation that started in the development phase further
ensures the ability to proactively deliver the application with the highest quality possible. Feedback from the
production management team to development is critical. Enhancements to application monitoring happen here
and are often not passed back to the development teams — ensure this will not happen.

Critical Application Management Processes

Best practices dictates that the ability to consistently and reliability deliver an application to the market can be
achieved by utilizing an integrated and well defined set of operational processes such as provided via the ITIL
framework. At the onset, this can seem to be a daunting and overwhelming challenge and expense. One
approach is to adapt a simplified ITIL framework that first targets key process areas. We recommend a service
strategy consisting of three main components:

• Service Management – supports the delivery and measurement of customer service;

• Configuration Management – the maintenance of IT asset inventory to appropriately supported
configuration levels as well as the forward looking capacity levels sufficient to support evolving
service requirements; and

• Service Operation – the core processes supporting the delivery of your application.

Page 14

A properly configured APM solution whether purchased or delivered as a service should provide near real-time
incident (alerting, notification and issues escalation), problem (data identifying root cause), change (supporting
detail regarding the effectiveness of the change provided through monitored metrics and unauthorized change
typically results in issue notifications), and availability (SLA reporting) management.

Change management processes are some of the easiest to implement and can have the highest payback in
terms of increased application availability. Unfortunately, many companies fail to follow their change processes
because technical staff members find the processes to be inconvenient and cumbersome. For most of our
customers we advocate a very simple change process consisting of documentation, signoff, and defined
maintenance windows with the flexibility to accommodate emergency changes. Whoever is responsible for
implementing changes should be held directly accountable for meeting the availability SLAs of the
application. Properly implemented application monitoring should provide data for analysis which supports the
need to implement performance-based change to meet business service levels.

A well defined, documented and tracked change management process is probably the most important
component to making sure your instrumentation strategy evolves to keep pace with changing business needs.

The ITIL support processes identified in the support model above are required to produce the service results
demanded by enterprise customers of Software-plus-Services applications. If this type of structured approach is
not in place, the investment of time necessary to implement these processes internally or switch to a service
provider who does will provide rapid payback in terms of customer satisfaction due to higher quality service
delivery, customer retention, and operational efficiency.

Application Monitoring Enables Proactive Efficient Management

Proactive application monitoring provides the insight needed to enable efficient production management.
When implementing the monitoring elements discussed in this paper, production operations staff, whether
internal or external, will now have the visibility necessary to manage the Software-plus-Services application at a
lower cost and higher value to end customers. The next step is using this proactive intelligence as a selling tool
by providing some level of transparency and quality assurance to customers and prospects alike.

SLA/KPI Visibility for Customers

Leading SaaS companies such as
Salesforce.com provide SLA visibility to
customers based on internal APM data
around service availability. This provides
assurance to enterprise customers that their
businesses are not at risk using the Salesforce
platform. Providing that same assurance and
more can easily be achieved by implementing
the approach outlined in this paper.

One option is to offer a read-only System
Shepherd® dashboard to each customer. The
top figure on page seven illustrates what this

Page 15

can look like. Alternatively, a higher level custom executive dashboard can be created using the exposed web
services data. The metrics exposed in this type of dashboard should be relevant to the end customers’ business.
Typically, the availability and aggregate performance of the solution in conjunction with two or three business
relevant metrics or Key Performance Indicators (KPIs) relative to the customer’s use of the platform are a good
place to start. For example: transactions per day, feature utilization rates, and cost savings per relevant unit.
With KPIs such as these in place, feedback can then be elicited from customers on how to make your application
and the dashboard more meaningful to their business.

Continuous Performance Optimization

Once the Software-plus-Services solution is deployed, you want to continuously look for ways to:

• Reduce operational expenses on a per-unit basis,

• Improve end-user experience,

• Drive more revenue, and

• Empower the sales organization.

An outsourced application support vendor(s) should be employed to help deliver these objectives. With sound
APM data and a flexible operations team the organization is now poised to produce these results to the
business. The following approaches have been found to be effective:

• Empowering a technical operations vendor or internal team to communicate continuously with the
software engineering team to address minor performance and scaling issues on a prioritized basis
before they become customer impacting. Having consistent application and infrastructure data
between the production and non-production environments accessible to both groups makes this
process much more efficient and productive as the trust barriers are eliminated.

• Implementing a Monitoring 2.0 solution to extract business relevant data from the extensive APM
data being collected. The general concept of Monitoring 2.0 is to integrate APM data with user
click-stream, delivery cost, and per customer or user revenue data into a physical or virtual data
warehouse and then use business intelligence techniques to answer questions such as:

o If 10,000 users are added for a large prospective customer, how much incremental delivery
expenses will be incurred? (the answer enables a large deal P&L approach to pricing)

o As the application user base scales, what does the delivery expense curve look like?
o What are the most frequent usage patterns within the application?
 Which of these usage patterns lead to increased revenue?
 Which of these usage patterns lead to customer churn (turn over)?

o Which features within the application influence prospect to customer conversion?
o What is the prioritized list of features within the application that should be enhanced or

eliminated?
o Which features or application components have the highest operational support expense

impact?

Page 16

SUMMARY
Implementing an end-to-end monitoring and management approach will have a significant impact on successful
Software-plus-Services businesses. The top items covered in this paper were:

• Complete end-to-end application and end-user experience monitoring is essential to understanding
the technology and can add great insight into the business. This instrumentation is the foundation
for reducing operational expenses and improving customer experience.

• Stress testing should be integrated into the application release process. It illuminates application
problems before customers see them and enables the release of new software with confidence.

• Exceptional application management requires a process and analytics oriented approach. The
stronger the processes and underlying application visibility are, the more the end customer will love
the application for its stability, performance, transparency of delivery, and continuous
improvement.

• Monitoring 2.0 – the combination of business intelligence and application performance
management –provides significant benefits to the business by answering important questions such
as “How can we increase revenue through an increase in free to premium conversions?”

ABOUT ABSOLUTE PERFORMANCE
Absolute Performance enables business executives to deliver mission critical applications at lower cost and
higher value to their customers. We do this through a combination of software (monitoring delivered as a
service) and application management services. Our production application lifecycle management approach
encompasses business requirements translation to operational delivery requirements, pre-production stress
testing and application instrumentation, production application management services and continuous
performance improvement via proactive capacity planning, continuous application performance optimization
and Monitoring 2.0 business intelligence services. You can purchase our services directly or through one of our
channel partners who can be found at http://www.absolute-performance.com/partners.

For more information:

Jerry Champlin, CEO

jerrychampin@absolute-performance.com

www.absolute-performance.com

303.565.4444

http://www.absolute-performance.com/partners�
mailto:jerrychampin@absolute-performance.com�
http://www.absolute-performance.com/�

	/
	/
	Application Instrumentation, Stress Testing and Production Management:
	What Software-plus-Services ISVs Need to Know
	Microsoft Software-plus-Services
	Thursday, 4 June 2009
	Version 7.08
	Contents
	List of Acronyms
	Introduction
	What Is A Software-plus-Services Application?
	Application Instrumentation
	Backend Processing Component Instrumentation
	Database and Data Access Layer Instrumentation
	Front End User Interface and Web Services
	Network and Storage Infrastructure
	Real-Time Application Analysis

	Pre-Production Stress Testing
	Testing Types
	Failure Test
	Sustained Load Test
	Ongoing Approach (Agile Stress Testing)
	Special Investigations
	Leveraging Pre-Production Testing for Production Visibility

	Production Application Lifecycle Management – tying it all together
	Business Requirements Development
	24x7 Production Application Support
	Critical Application Management Processes
	Application Monitoring Enables Proactive Efficient Management
	/SLA/KPI Visibility for Customers

	Summary

